Étant donnés deux complexes $(a,b) \in \mathbb{C}^2$, et une suite complexe $(f_n)_{n \in \mathbb{N}}$, on cherche l'ensemble des suites complexes $(u_n)_{n \in \mathbb{N}}$ vérifiant l'équation de récurrence linéaire d'ordre 2:

$$\forall n \in \mathbb{N}, \quad u_{n+2} = au_{n+1} + bu_n + f_n$$

On notera S_E l'ensemble de ces suites.

1 Résolution de l'équation homogène

Soient $a,b \in \mathbb{C}$. On cherche les suites (u_n) complexes vérifiant l'équation homogène :

$$(H) \quad \forall n \in \mathbb{N}, \quad u_{n+2} = au_{n+1} + bu_n$$

On note $E = \mathcal{S}(\mathbb{C})$ l'espace vectoriel des suites complexes et on définit l'application

$$\phi: \left\{ \begin{array}{ccc} E & \longrightarrow & E \\ (u_n) & \mapsto & (v_n) \end{array} \right.$$

où la suite (v_n) est définie par :

$$\forall n \in \mathbb{N}, \quad v_n = u_{n+2} - au_{n+1} - bu_n$$

On note \mathcal{H} l'ensemble des suites de (E) vérifiant la relation (H).

 $\boxed{Q\ 1}$ Montrer que l'application ϕ est un endomorphisme de E et que $\mathcal H$ est un $\mathbb C$ -ev.

On considère l'application

$$\theta: \left\{ \begin{array}{ccc} \mathcal{H} & \longrightarrow & \mathbb{C}^2 \\ (u_n) & \mapsto & (u_0, u_1) \end{array} \right.$$

- $\boxed{Q\ 2}$ Montrer que l'application θ est un isomorphisme d'espaces vectoriels. Qu'en déduit-on sur la dimension de \mathcal{H} ?
- Q 3 Soit un système libre (u,v) de l'espace \mathcal{H} . Montrer que le système $(\theta(u),\theta(v))$ est libre dans l'espace \mathbb{C}^2 . Montrer ensuite que (u,v) est une base de \mathcal{H} .

On cherche maintenant deux suites de \mathcal{H} formant un système libre.

Q 4 Soit $r \in \mathbb{C}$ et $(r_n) = (r^n)$ une suite géométrique de raison r. A quelle condition $(r_n) \in \mathcal{H}$?

On considère l'équation caractéristique associée:

$$(C) \quad r^2 - ar - b = 0$$

et son discriminant Δ .

- Q 5 Si $\Delta \neq 0$, trouver une base de \mathcal{H} .
- Q 6 Si $\Delta = 0$, et r est la racine double de (C), montrer que la suite $(nr^n) \in \mathcal{H}$. Trouver alors une base de \mathcal{H} .
- Q 7 Exprimer une suite (u_n) vérifiant:

$$\forall n \in \mathbb{N}, \quad u_{n+2} = u_{n+1} + u_n$$

en fonction de ses deux premiers termes $u_0 \in \mathbb{R}, u_1 \in \mathbb{R}$. Etudier alors la convergence de cette suite en fonction de u_0 et u_1 .

Q 8 Déterminer la suite (u_n) vérifiant:

$$u_0 = 2, u_1 = 1 \text{ et } \forall n \in \mathbb{N}, \quad u_{n+2} = 4u_{n+1} - 4u_n$$

Q 9 On définit la suite de Fibonacci (F_n) par :

$$F_0 = F_1 = 1 \text{ et } \forall n \in \mathbb{N} \quad F_{n+2} = F_{n+1} + F_n$$

Déterminer un équivalent de la suite (F_n) .

2 Suites récurrentes linéaires avec second membre.

On se donne trois complexes a,b, une suite (f_n) et on cherche les suites (u_n) vérifiant:

$$(E) \quad \forall n \in \mathbb{N}, \quad u_{n+2} = au_{n+1} + bu_n + f_n$$

On notera S_E l'ensemble de toutes les suites vérifiant (E).

 \overline{Q} 10 Si une suite (v_n) est une solution particulière de (E), déterminer toutes les suites (u_n) de \mathcal{S}_E .

Q 11 Quelle est la structure de l'ensemble S_E des solutions de (E)?

On suppose désormais que la suite f_n est constante: $\exists c \in \mathbb{C}$ tel que $\forall n \in \mathbb{N}, f_n = c$.

Q 12 Chercher les suites constantes solution de (E).

Q 13 S'il n'y a pas de suites constantes solutions, chercher des suites solutions de la forme $v_n = \alpha n$.

Q 14 Si les deux questions précédentes ne fournissent pas une solution particulière, montrer qu'il existe une solution particulière de la forme $v_n = \alpha n^2$.

 \overline{Q} 15 Trouver la suite réelle solution de

$$u_0 = 1, u_1 = 0 \text{ et } \forall n \in \mathbb{N}, \quad u_{n+2} = 2u_{n+1} - u_n + 2$$

Q 16 Trouver les suites complexes vérifiant

$$\forall n \in \mathbb{N}, \quad u_{n+2} + u_{n+1} + u_n = 1$$

Q 17 Déterminer les suites à termes positifs (u_n) vérifiant

$$\forall n \in \mathbb{N}, \quad u_{n+2} = \sqrt{u_{n+1}u_n}$$

Q 18 a) On considère la matrice

$$A=((a_{ij}))_{1\leq i,j\leq n}\in \mathfrak{M}_n(\mathbb{R})$$
 où $a_{ij}=\delta_{i,n+1-i}$

Déterminer A^n .

b) Calculer A^n lorsque

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Q 19 a) On considère la matrice

$$T_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$$

Calculer $(T_{\theta})^n$.

b) Déterminer A^n lorsque

$$A = \frac{1}{2} \begin{pmatrix} 1 + \cos \theta & \sin \theta \\ \sin \theta & 1 - \cos \theta \end{pmatrix} \in \mathfrak{M}_2(\mathbb{R})$$