Ex 1 Facile, technique

- a. Résoudre l'équation $\cos x \sqrt{3}\sin x = 1$.
- b. Résoudre l'équation $(\sqrt{3}+1)\cos x + (\sqrt{3}-1)\sin x + \sqrt{3}-1 = 0$. On pourra poser $t = \tan(x/2)$.

■ Ex 2 ■ Facile

Soit un complexe z et un entier n vérifiant:

$$1 + z + \dots + z^{n-1} = nz^n$$

Montrer que $|z| \leq 1$.

Ex 3 Facile, technique

a) Résoudre dans C, l'équation

$$(1+iz)^5 = (1-iz)^5 (1)$$

b) En déduire les valeurs de tan $\frac{\pi}{5}$ et tan $\frac{2\pi}{5}$, que l'on exprimera sous la forme:

$$\sqrt{p+q\sqrt{n}}, \quad (n,p,q) \in \mathbb{Z}^2$$

c) En déduire la valeur de tan $\frac{\pi}{10}$

Ex 4 **■** Facile

Déterminez le module et un argument des complexes $\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$ et $\frac{1+\cos\theta+i\sin\theta}{1-\cos\theta-i\sin\theta}$ où $\theta\in\mathbb{R}\setminus2\pi\mathbb{Z}$.

$lackbox{Ex 5} lackbox{lackbox{less}}$ Facile, classique

On pose

$$A = \sin(\frac{\pi}{12}) \quad B = \cos(\frac{\pi}{12}) \quad C = \tan(\frac{\pi}{12})$$

En utilisant la trigonométrie, montrer que A vérifie une équation du second degré. Exprimer A, B, C en utilisant des racines carrées.

Ex 6 Facile

Trouver les complexes z qui vérifient

$$|z - 1| = 1$$

lacksquare Ex 7 lacksquare Facile, classique lacksquare

Résoudre les équations suivantes d'inconnue $z \in \mathbb{C}$:

(i)
$$1 + \frac{z+i}{z-i} + \left(\frac{z+i}{z-i}\right)^2 + \left(\frac{z+i}{z-i}\right)^3 = 0$$

(ii) $(z+i)^n = (z-i)^n$

(ii)
$$(z+i)^n = (z-i)^n$$

Indication : Poser $Z = \frac{z+i}{z-i}$

■ Ex 8 ■■ Facile ■

Résoudre dans \mathbb{C} , l'équation $z^3 = \overline{z}$.

$\mathbf{Ex} \; \mathbf{9} \blacksquare \!\!\!\square$ Classique, à faire

Calculer la somme $S_n = \sum_{k=1}^n \frac{1}{2^k} \cos \frac{k\pi}{3}$.

Four $n \geq 2$, on note $\omega = e^{\frac{2i\pi}{n}}$ (racine nième de l'unité). Calculer les sommes suivantes:

$$\sum_{k=0}^{n-1} \omega^{kp} \quad (p \in \mathbb{Z})$$

$$\sum_{k=0}^{n-1} \binom{n}{k} \omega^k$$

$$\sum_{k=0}^{n-1} \left| \omega^k - 1 \right|$$

a. Montrons que l'ensemble des solutions est :

$$\mathcal{S} = \{2k\pi; \ k \in \mathbb{Z}\} \cup \{2k\pi - \frac{2\pi}{3}; \ k \in \mathbb{Z}\}$$

- \subset : soit $x \in \mathbb{R}$ une solution. Réécrivons l'équation sous la forme : $2\left(\frac{1}{2}\cos x \frac{\sqrt{3}}{2}\sin x\right) = 1$. On doit donc avoir $\cos(\pi/3)\cos x \sin(\pi/3)\sin x = 1/2$, c'est à dire $\cos(\pi/3 + x) = \cos(\pi/3)$. Par conséquent, il existe $k \in \mathbb{Z}$ tel que $\pi/3 + x = \pi/3 + 2k\pi$, ou alors $\pi/3 + x = 2k\pi \pi/3$, c'est à dire $x \in \{2k\pi; \ k \in \mathbb{Z}\} \cup \{2k\pi \frac{2\pi}{3}; \ k \in \mathbb{Z}\}$.
- \supset : S'il existe $k \in \mathbb{Z}$ tel que $x = 2k\pi$, on a bien $\cos x \sqrt{3}\sin(x) = 1$. De même, s'il existe $k \in \mathbb{Z}$ tel que $x = 2k\pi \frac{2\pi}{3}$, on a $\cos x \sqrt{3}\sin x = -\frac{1}{2} + \sqrt{3}\frac{\sqrt{3}}{2} = 1$.
- b. Montrons que

$$S = \{2k\pi - \frac{\pi}{2}; \ k \in \mathbb{Z}\} \cup \{2k\pi + \frac{\pi}{3}; \ k \in \mathbb{Z}\}$$

 \subset : Soit $x \in \mathbb{R}$ une solution. On vérifie rapidement que $\tan(x/2)$ est défini (sinon $x = (2k+1)\pi$ et x ne serait pas solution). On peut donc poser $t = \tan(x/2)$. En utilisant les expressions de $\sin x$ et $\cos x$ vues en cours, on doit avoir

$$(\sqrt{3}+1)\frac{1-t^2}{1+t^2} + (\sqrt{3}-1)\frac{2t}{1+t^2} + (\sqrt{3}-1) = 0$$

ce qui donne l'équation du second degré suivante en t:

$$t^2 + (1 - \sqrt{3})t - \sqrt{3} = 0$$

Le discriminant de cette équation vaut $\Delta = (1 - \sqrt{3})^2 + 4\sqrt{3} = (1 + \sqrt{3})^2$ et les deux solutions sont donc $t_1 = -1$ et $t_2 = \sqrt{3}$. Par conséquent, $\tan(x/2) = -1$, c'est à dire qu'il existe $k \in \mathbb{Z}$ tel que $x = 2k\pi - \frac{\pi}{2}$ ou alors $\tan(x/2) = \sqrt{3} = \tan(\pi/3)$, c'est à dire qu'il existe $k \in \mathbb{Z}$ tel que $x = 2k\pi + \frac{2\pi}{3}$.

- ⊃ : on vérifie simplement l'inclusion réciproque.
- Q 2 Par l'absurde, supposons que |z| > 1. Utilisons l'inégalité triangulaire : $n|z|^n = |1+z+\cdots+z^{n-1}| \le 1+|z|+\cdots+|z|^{n-1}$. Mais comme $|z| \ge 1$, $1 \le |z| \le |z|^2 \le \cdots \le |z|^{n-1}$. Par conséquent,

$$n|z|^n \le n|z|^{n-1}$$

En divisant par |z| > 0, on trouve alors $|z| \le 1$, une absurdité. En conclusion, nous avons montré que $|z| \le 1$.

 $\boxed{Q\ 3}$ a) Soit z solution de 1. $z \neq -i$ donc $1-iz \neq 0$. Posons $U = \frac{1+iz}{1-iz}$. U doit vérifier $U^5 = 1$. En posant $\omega = e^{i\frac{2\pi}{5}}$, il existe $k \in [0,4]$ tel que:

$$U = \omega^k$$

Alors:

$$z = -i\frac{\omega^k - 1}{\omega^k + 1} = \tan\left(\frac{k\pi}{5}\right)$$

On vérifie réciproquement, que $z = \tan \frac{k\pi}{5}$ est solution pour $k \in [0,4]$.

b) Résolvons de façon différente l'équation (1) en développant les deux membres à l'aide du binôme:

$$1 + 5(iz) + 10(iz)^{2} + 10(iz)^{3} + 5(iz)^{4} + (iz)^{5} = 1 - 5(iz) + 10(iz)^{2} - 10(iz)^{3} + 5(iz)^{4} - (iz)^{5}$$
$$5iz + 10(iz)^{3} + (iz)^{5} = 0$$
$$z \left[z^{4} - 10z^{2} + 5\right] = 0$$

Et si z est une solution non-nulle, $Z=z^2$ est racine du trinôme

$$Z^2 - 10Z + 5 = 0$$

qui possède deux racines réelles:

$$Z_1 = 5 - 2\sqrt{5}$$
 $Z_2 = 5 + 2\sqrt{5}$

et donc, les racines de (1) sont:

$$0, \pm \sqrt{5 + 2\sqrt{5}}, \pm \sqrt{5 - 2\sqrt{5}}$$

Comme tan $\frac{k\pi}{5}$ est strictement positif pour k=1,2, et que tan $\frac{\pi}{5}<\tan\frac{2\pi}{5},$ on trouve que

$$\tan\frac{\pi}{5} = \sqrt{5 - 2\sqrt{5}}$$
 $\tan\frac{2\pi}{5} = \sqrt{5 + 2\sqrt{5}}$

c) En utilisant la formule de trigonométrie:

$$\tan 2\theta = \frac{2\tan\theta}{1 - \tan^2\theta}$$

avec $\theta = \frac{\pi}{10}$, et en posant $A = \tan \frac{\pi}{10}$, A doit vérifier:

$$\sqrt{5 - 2\sqrt{5}A^2 + 2A} - \sqrt{5 - 2\sqrt{5}} = 0$$

et A est alors la seule racine positive de ce trinôme:

$$A = \frac{-1 + \sqrt{2}\sqrt{3 - \sqrt{5}}}{\sqrt{5 - 2\sqrt{5}}}$$

 $\overline{Q\ 4}$ On trouve $1+i\sqrt{3}=2e^{i\frac{\pi}{3}}$ et $1-i=\sqrt{2}e^{-i\frac{\pi}{4}}$ d'où $z=2^{10}e^{i\frac{35i\pi}{3}}$. Pour l'autre,

$$\frac{1+\cos\theta+i\sin\theta}{1-\cos\theta-i\sin\theta} = \frac{1+e^{i\theta}}{1-e^{i\theta}} = \frac{e^{i\frac{\theta}{2}}}{e^{i\frac{\theta}{2}}} \frac{2\cos\frac{\theta}{2}}{-2i\sin\frac{\theta}{2}} = \cot\frac{\theta}{2}e^{i\frac{\pi}{2}}$$

Il faut ensuite étudier le signe de cotan $\frac{\theta}{2}$ pour trouver l'argument.

En utilisant la formule de trigonométrie $\cos(2a) = 1 - 2\sin^2 a$, on trouve que $A^2 = \frac{1 - \cos(\pi/6)}{2}$, c'est à dire $A = \frac{\sqrt{2 - \sqrt{3}}}{2}$ (A > 0). On fait de même avec B en utilisant la formule $\cos(2a) = 2\cos^2 a - 1$.

On peut également utilser $z = e^{i\pi/12}$ et dire que $z^2 = e^{i\pi/6} = \frac{\sqrt{3}}{2} + \frac{i}{2}$ et extraire une racine carrée sous forme algébrique.

 $\boxed{Q~6}$ On cherche les points du plan qui se trouvent à distance 1 du point d'affixe 1. C'est le cercle centré en 1 de rayon 1:

$$z = 1 + e^{i\theta}, \quad \theta \in [0.2\pi[$$

En posant $Z = \frac{z+i}{z-i}$, Z vérifie $1+Z+Z^2+Z^3=0$, c'est à dire Z=i,-1,-i (on vérifie que $Z\neq 1$ et alors $1+Z+Z^2+Z^3=\frac{1-Z^4}{1-Z}$). On écrit ensuite que $z=i\frac{Z+1}{Z-1}$, et on trouve les trois solutions z=1,0,-1. Pour la deuxième équation, poser $U=\frac{z+i}{z-i}$, $U=\omega=e^{\frac{2i\pi}{n}}$, et alors $z=i\frac{U+1}{U-1}$. Après factorisation de l'angle

moitié, on trouve que $z \in \{\cot \frac{k\pi}{n}; k \in [0, n-1]\}$. $\boxed{Q \ 8} \ z = 0$ est une solution. Si $z \neq 0$ est solution, alors en multipliant par z on trouve que $z^4 = |z|^2 = 1$ d'où

|z| = 0 est une solution. Si $z \neq 0$ est solution, alors en multipliant par z on trouve que $|z|^2 = |z|^2 = 1$ d'ou $z \in \{1, i, -1, -i\}$.

On vérifie réciproquement que ces solutions conviennent. L'ensemble des solutions est donc $\{0,1,i,-1,-i\}$.

Q 9 On calcule

$$U_n = \sum_{k=1}^n \frac{1}{2^k} e^{\frac{ik\pi}{3}} = \frac{e^{\frac{i\pi}{3}}}{2} \sum_{p=0}^{n-1} \left(\frac{e^{\frac{i\pi}{3}}}{2} \right)^k = \frac{1}{2^n} \frac{e^{\frac{i(n+1)\pi}{3}} - 2^n e^{i\frac{\pi}{3}}}{e^{\frac{i\pi}{3}} - 2}$$

Si on remarque que $e^{i\frac{\pi}{3}} - 2 = e^{i\frac{2\pi}{3}} - 1$, on obtient que

$$S_n = \text{Re}(U_n) = \boxed{\frac{1}{2^n \sqrt{3}} \sin \frac{n\pi}{3}}$$

Q 10 La première somme est géométrique de raison ω^p . La raison est $\neq 1$ ssi p n'est pas un multiple de n. Alors

$$S = \frac{\omega^{pn} - 1}{\omega^p - 1} = \boxed{0}$$

Si p est un multiple de n, on trouve S = n.

La deuxième somme se calcule grâce au binôme:

$$S = \sum_{k=0}^{n} {n \choose k} \omega^k - \omega^n = (1+\omega)^n - 1 = \boxed{-2^n \cos^n \frac{\pi}{n} - 1}$$

La troisième somme se calcule en remarquant que

$$|\omega^k - 1| = 2|\sin\frac{k\pi}{n}| = 2\sin\frac{k\pi}{n}$$

(factorisation de l'angle moitié et le sinus est positif si $k \in [0, n-1]$). On introduit la somme des exponentielles imaginaires correspondante que l'on calcule et finalement,

$$U_n = 2\sum_{k=0}^{n-1} e^{\frac{ik\pi}{n}} = 2\frac{e^{i\pi} - 1}{e^{i\frac{\pi}{n}} - 1} = \frac{2ie^{-\frac{i\pi}{2n}}}{\sin\frac{\pi}{2n}}$$

$$S = \operatorname{Im}(U_n) = 2 \operatorname{cotan}\left(\frac{\pi}{2n}\right)$$