Soit
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \longrightarrow & (x+y,xy) \end{array} \right.$$

- a) On considère un élément $(a,b) \in \mathbb{R}^2$. Déterminez l'ensemble $f^{-1}(\{(a,b)\})$ (Les notations sont-elles correctes?)
- b) Déterminez $f(\mathbb{R}^2)$.
- c) L'application f est-elle injective? surjective?

Indication : se rappeler les résultats sur les trinômes : si l'on connait la somme et le produit de deux nombres, ils sont solution d'une équation du second degré...

Ex 2 Facile

Soient deux ensembles E et F et deux applications $f: E \mapsto F$, $g: F \mapsto E$ telles que $f \circ g = \mathrm{id}_F$. Montrez que $(g \circ f)(E) = g(F)$.

Ex 3 Facile

Soit un ensemble E et une relation \mathcal{R} sur E qui est réflexive et qui vérifie :

$$\forall (x,y,z) \in E^3, (x\mathcal{R}y \text{ et } y\mathcal{R}z) \Rightarrow z\mathcal{R}x$$

Montrez que \mathcal{R} est une relation d'équivalence sur E.

Ex 4 Facile

Sur l'ensemble \mathbb{R} , on considère la relation définie par

$$x\mathcal{R}y \Longleftrightarrow x^2 - y^2 = x - y$$

- a) Montrez que \mathcal{R} est une relation d'équivalence;
- b) Soit $x \in \mathbb{R}$. Déterminez sa classe d'équivalence C_x .

$\mathbf{Ex}\ \mathbf{5}$ Moyen

Soit une relation \mathcal{R} sur un ensemble E. On définit une relation \mathcal{S} sur E par:

$$\forall (x,y) \in E^2, \quad xSy \iff \exists n \in \mathbb{N}^*, \ \exists (x_0,\ldots,x_n) \in E^{n+1} \ \text{tq} \ x_0 = x, \ x_n = y \ \text{et} \ \forall i \in [0,n-1], \ x_i \mathcal{R} x_{i+1}$$

- a) Montrez que la relation S est transitive.
- b) On suppose que \mathcal{R} est réflexive et symétrique. Montrez que \mathcal{S} est une relation d'équivalence.

Ex 6 Facile

Soit un ensemble E et un ensemble ordonné (F, \leq) . Sur l'ensemble $\mathcal{F}(E,F)$ des applications de E vers F, on définit une relation, notée \leq par :

$$\forall (f,g) \in \mathcal{F}(E,F)^2, \quad f \leq g \iff (\forall x \in E, \quad f(x) \leq g(x))$$

- a) Montrez que \leq est une relation d'ordre sur l'ensemble $\mathcal{F}(E,F)$.
- b)Si $E = F = \mathbb{R}$, et l'ordre \leq est l'ordre naturel sur \mathbb{R} , montrez que la relation d'ordre \leq définie sur $\mathcal{F}(\mathbb{R},\mathbb{R})$ n'est pas totale.

Ex 7 Facile

Sur l'ensemble \mathbb{Z} , étudier les propriétés de la loi définie par :

$$p \star q = p + q + pq$$

Est-ce que (\mathbb{Z},\star) est un groupe?

Ex 8 Facile

Montrer qu'un groupe (G,.) tel que $\forall x \in G, x^2 = e$ est commutatif.

a) Soit $(x,y) \in \mathbb{R}^2$.

$$(x,y) \in f^{-1}(\{(a,b)\}) \Longleftrightarrow \begin{cases} x+y=a \\ xy=b \end{cases}$$

Donc, $(x,y) \in f^{-1}(\{(a,b)\})$ si et seulement si, x et y sont racines du trinôme:

$$X^2 - aX + b$$

- Si $\Delta = a^2 - 4b < 0$, il n'y a pas de racines réelles à ce trinôme, et donc $f^{-1}(\{(a,b)\}) = \emptyset$.

- Si
$$\Delta = a^2 - 4b = 0$$
, il y a une racine double, $X = \frac{a}{2}$, et donc

$$f^{-1}(\{(a,b)\}) = \{(\frac{a}{2}, \frac{a}{2})\}$$

- Si
$$\Delta = a^2 - 4b = 0$$
, il y a deux racines distinctes, $X_1 = \frac{a + \sqrt{a^2 - 4b}}{2}$, $X_2 = \frac{a - \sqrt{a^2 - 4b}}{2}$, et donc

$$f^{-1}(\{(a,b)\}) = \{(X_1, X_2), (X_2, X_1)\}\$$

b) $(X,Y) \in f(\mathbb{R}^2)$ si et seulement s'il existe $(x,y) \in f^{-1}(\{(X,Y)\})$, et d'après la question précédente, c'est le cas ssi $X^2 - 4Y > 0$. Donc

$$f(\mathbb{R}^2) = \{(X,Y) \in \mathbb{R}^2 \text{ to } X^2 - 4Y > 0\}$$

(représenter graphiquement cet ensemble).

c) Comme $f(\mathbb{R}^2) \neq \mathbb{R}^2$, f n'est pas surjective.

Comme f((1,2)) = f((2,1)) par exemple, f n'est pas injective.

Q 2

- Montrons que $(g \circ f)(E) \subset g(F)$. Soit $x \in (g \circ f)(E)$. Par définition de l'image directe, il existe $x' \in E$ tel que $x = g \circ f(x')$. Donc x = g(f(x')). Mais en posant $y = f(x') \in F$, puisque x = g(y), par définition de l'image directe, $x \in g(F)$.
- Montrons que $g(F) \subset (g \circ f)(E)$. Soit $x \in g(F)$. Par définition de l'image directe, il existe $y \in F$ tel que x = g(y). Posons $z = f(g(y)) \in F$. Puisque $f \circ g = \mathrm{id}_F$, z = y et donc $x = g(z) = g(f(x)) = (g \circ f)(x)$. Puisque $x \in E$, par définition de l'image directe, on a bien $x \in (g \circ f)(E)$.

Q 3

- Montrons que \mathcal{R} est symétrique. Soient $(x,y) \in E^2$ tels que $x\mathcal{R}y$. Comme \mathcal{R} est réflexive, on a également $y\mathcal{R}y$ et alors d'après l'hypothèse de l'énoncé, on en déduit que $y\mathcal{R}x$.
- Montrons que \mathcal{R} est transitive. Soient $(x,y,z) \in E^3$ tels que $x\mathcal{R}y$ et $y\mathcal{R}z$. Montrons que $x\mathcal{R}z$. D'après la propriété de l'énoncé, on a que $z\mathcal{R}x$. Mais puisque l'on a déjà montré que la relation était symétrique, on a également $x\mathcal{R}z$.

a) Il est clair que la relation est réflexive et symétrique. Montrons la transitivité: soient $(x,y,z) \in \mathbb{R}^3$ tels que $x\mathcal{R}y$ et $y\mathcal{R}z$. On a donc

$$x^2 - y^2 = x - y$$
 et $y^2 - z^2 = y - z$

Montrons que $x\mathcal{R}z$. Pour cela, additionnons les deux égalités précédentes:

$$x^2 - z^2 = x - z$$

b) Soit un réel $x \in \mathbb{R}$. Sa classe d'équivalence est définie par

$$C_x = \{y \in \mathbb{R} \mid x^2 - y^2 = x - y\} = \{y \in \mathbb{R} \mid (x - y)(x + y - 1) = 0\}$$

On a donc

$$C_x = \{x, 1 - x\}$$

a) Soient $(x,y,z) \in E^3$ tels que $x\mathcal{S}y$ et $y\mathcal{S}z$. Il existe donc $(n,p) \in \mathbb{N}^*$ et $(x_0,\ldots,x_n) \in E^n$, $(y_0,\ldots,y_p) \in E^p$ tels que $x=x_0, \ x_n=y=y_0, \ y_p=z$ avec $\forall i \in [0,n-1], \ x_i\mathcal{R}x_{i+1}$ et $\forall i \in [0,p-1], \ y_i\mathcal{R}y_{i+1}$. Posons N=n+p, et (z_0,\ldots,z_{n+p}) définis par $\forall i \in [0,n], \ z_i=x_i$ et $\forall i \in [n+1,n+p], \ z_i=y_{i-n}$. On a bien $z_0=x$ et $z_{n+p}=y_p=z$, et $\forall i \in [0,n+p-1], \ z_i\mathcal{R}z_{i+1}$. Donc $x\mathcal{S}z$.

- Montrons que S est réflexive. Soit $x \in E$. Posons n = 1 et $x_0 = x_1 = x$. On a bien $x_0 = x$, $x_1 = x$ et $x_0 \mathcal{R} x_1$ puisque \mathcal{R} est réflexive, ce qui montre que $x \mathcal{S} x$.
- Montrons que S est symétrique. Soient $(x,y) \in E^2$ tels que xSy. Cela signifie qu'il existe $n \in \mathbb{N}$ et $(x_0,\ldots,x_n) \in E^{n+1}$ tels que $x=x_0, x_n=y$ et $\forall i \in [0,n-1], x_i\mathcal{R}x_{i+1}$. Posons N=n, et $\forall i \in [0,n], x_i'=x_{n-i}$. On a bien $x_0'=x_n=y, x_n'=x_0=x$, et $\forall i \in [0,N-1], x_i'\mathcal{R}x_{i+1}'$. En effet, si $i \in [0,N-1], x_i'=x_{n-i}$, et $x_{i+1}=x_{n-i-1}$. Comme $x_{n-i-1}\mathcal{R}x_{n-i}$, puisque \mathcal{R} est symétrique, on a également $x_{n-i}\mathcal{R}x_{n-i-1}$, c'est à dire $x_i'\mathcal{R}x_{i+1}'$. Cela montre que ySx.
- On a montré à la question précédente que \mathcal{S} était toujours transitive.

Par conséquent, S définit une relation d'équivalence sur E.

- Q 6 a) Montrons la réflexivité: soit $f \in \mathcal{F}(E,F)$. Montrons que $f \leq f$. Soit $x \in E$, puisque \leq est réflexive sur F, on a $f(x) \leq f(x)$. Donc $\forall x \in E$, $f(x) \leq f(x)$ ce qui montre que $f \leq f$. On montre de façon similaire la symétrie et la transitivité.
 - b) Considérons la fonction $f: \mathbb{R} \to \mathbb{R}$ telle que f(0) = 1 et $\forall x \neq 0$, f(x) = 0, et la fonction $g: \mathbb{R} \to \mathbb{R}$ définie par g(0) = 0 et $\forall x \neq 0$, g(x) = 1. Alors on n'a pas $f \leq g$ car $f(0) \not\preceq g(0)$, et on n'a pas $g \leq f$ car $g(1) \not\preceq f(1)$. L'ordre n'est donc pas total, car ces deux fonctions f et g ne sont pas comparables.

Q7

- 1. La loi \star est clairement commutative.
- 2. Soient $(p,q,r) \in \mathbb{Z}^3$. Calculons

$$(p \star q) \star r = (p+q+pq) \star r = p+q+pq+r+pr+qr+pqr$$

 et

$$p\star(q\star r)=p\star(q+r+qr)=p+q+r+qr+pq+pr+pqr$$

La loi est donc associative.

3. Cherchons un élément neutre. On cherche un élément $e \in \mathbb{Z}$ tel que $\forall p \in \mathbb{Z}$,

$$p \star e = e \star p = p \iff e(1+p) = 0$$

On trouve donc un élément neutre : e=0.

4. Soit un entier $p \in \mathbb{Z}$. Est-ce que l'élément p possède un symétrique? On cherche un élément $q \in \mathbb{Z}$ tel que $p \star q = q \star p = 0$, c'est à dire:

$$p + q + pq = 0 \iff q(1+p) = -p$$

On voit par exemple que l'élément -1 ne possède pas de symétrique.

- 5. (\mathbb{Z},\star) n'est donc pas un groupe.
- \overline{Q} 8 L'hypothèse de l'énoncé dit que tout élément est son propre symétrique :

$$\forall x \in G, \quad x^{-1} = x$$

Soit alors deux éléments $(x,y) \in G^2$. Comme $(xy)^{-1} = (xy)$, on en déduit que $y^{-1}x^{-1} = xy$. Mais puisque $x^{-1} = x$ et $y^{-1} = y$, on trouve que yx = xy.